-
Fundamentals of data science and AI (Technical)
-
About Pakomak & Chabukai6/SDSA cooperation
-
Fundamentals of data science and AI (Non-technical)
-
Courses
-
Who are leading
-
Certificates
-
Educational Partners
-
News
- Registration
Duration: 4 weeks Course fee: 1000 GBP Number of hours: 30 (Includes tutorial support + self study, assignments and peer discussions) Assignments: Three assignments (each worth 33% of the final mark) Starting schedule: 15 January 2024 26 February 2024 1 April 2024 28 May 2024 |
This course equips you
with the theoretical knowledge and both practical and technical skills to
participate in the flourishing data revolution, helping you to contribute to
and benefit from the new data-driven economy. The course emphasizes a hands-on
approach to learning data and skills, offering a number of interactive, online
exercises that will let you try out many of the techniques and concepts covered
in the taught material. In addition the course introduces theoretical AI
concepts.
The course is broken
into four weeks.
Week 1: You will get “hands-on” experience of Jupyter the web-based learning environment which you will use for the course exercises and assignments. This week also contains a Python Primer activity for those of you who are unfamiliar with the programming language or would like a refresher.
Week 2: You will learn about the fundamental terminology and processes in data science, discovering the technology landscape that has helped fuel the data explosion, and the tools that data scientists use to unlock the hidden value in these vast amounts of data. This week also contains an introduction to using Python for data science. You will begin gaining hands-on experience of data science in this week, focusing on collecting, storing and managing data.
Week 3: In this week you will understand how the data is analyzed, covering a range of techniques that any data science team will encounter from statistics and machine learning and you will use Python to analyze some given data.
Week 4: Introducing use of search, clustering and knowledge graph processes. The case study in week four introduces in further detail the concepts of supervised and unsupervised learning to identify patterns which exist in data without classification labels. Such methods are used extensively by searching algorithms as they enable clustering of similar or closely-related results. By the end of this week you will have gained an understanding of the means by which todays search engines provide results and how the leverage structured information from knowledge bases to enhance both performance and user experience.
Aims and learning
outcomes
This module aims to provide you with the knowledge and expertise
to become a proficient data scientist.
Having successfully
completed this module, you will be able to:
·
Understand the key concepts in data science, including their
real-world applications and the toolkit used by data scientists;
·
Explain how data is collected, managed and stored for data
science;
·
Implement data collection and management scripts using NodeJS
and MongoDB;
·
Demonstrate an understanding of statistics and machine learning
concepts that are vital for data science;
·
Produce Python code to statistically analyse a dataset;
·
Critically evaluate data visualisations based on their design
and use for communicating stories from data;
·
Plan and generate visualisations from data using Python and
Bokeh.
·
Identify potential applications of AI in practice
·
Be familiar with the fundamental concepts of extraction,
clustering, prediction, as well as search and planning techniques
·
Learn how software can be used to process, analyze, and extract
meaning from natural language, images and numerical data to understand the
world the way we do
Key benefits:
1. Tutor-led –
University of Southampton and Chabukaisix Learn academics guide students
through the course material
2. Continuing Professional
Development (CPD) accredited
3. Hands-on – students learn how to apply concepts and techniques within their workplace.
Education provider:
Chabukaisix Learn and Southampton Data Science Academy
Southampton Data Science Academy forms part of the Web Science Institute at the University of Southampton –
ranked among the top 100 of universities globally.
Developed in partnership with leading global education specialists Cambridge Education Group (CEG), the Academy bridges the data skills gap in today’s increasingly data-driven world through world-class training and education from industry-leading academics and thought leaders in the field of data science.
CEG Digital partners with prestigious, high quality UK universities to deliver online or blended courses to a global market on a part-time, flexible basis. Courses are delivered using cutting-edge, tablet friendly technology and sector leading pedagogy.
Southampton Data Science Academy training is CPD accredited, meaning it has reached the Continuing Professional Development (CPD) standards and benchmarks.